Abstract
Let G be a graph with a fixed orientation and let A be a group. Let F(G,A) denote the set of all functions f: E(G) ↦A. The graph G is A -colorable if for any function f∈F(G,A), there is a function c: V(G) ↦A such that for every directed e=u v∈E(G), c(u)−c(v)≠f(e). The group chromatic numberχ1(G) of a graph G is the minimum m such that G is A-colorable for any group A of order at least m under a given orientation D. In [J. Combin. Theory Ser. B, 56 (1992), 165–182], Jaeger et al. proved that if G is a simple planar graph, then χ1(G)≤6. We prove in this paper that if G is a simple graph without a K 5-minor, then χ1(G)≤5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.