Abstract

We introduce the concept of a crossed product of a product system by a locally compact group. We prove that the crossed product of a row-finite and faithful product system by an amenable group is also a row-finite and faithful product system. We generalize a theorem of Hao and Ng about the crossed product of the Cuntz-Pimsner algebra of a $C^{\ast}$-correspondence by a group action to the context of product systems. We present examples related to group actions on $k$-graphs and to higher rank Doplicher-Roberts algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.