Abstract
A series of heavier group 14 element, terminal phosphide complexes, M(BDI)(PR(2)) (M = Ge, Sn, Pb; BDI = CH{(CH(3))CN-2,6-iPr(2)C(6)H(3)}(2); R = Ph, Cy, SiMe(3)) have been synthesized. Two different conformations (endo and exo) are observed in the solid-state; the complexes with an endo conformation have a planar coordination geometry at phosphorus (M = Ge, Sn; R = SiMe(3)) whereas the complexes possessing an exo conformation have a pyramidal geometry at phosphorus. Solution-state NMR studies reveal through-space scalar coupling between the tin and the isopropyl groups on the N-aryl moiety of the BDI ligand, with endo and exo exhibiting different J(SnC) values. The magnitudes of the tin-phosphorus and lead-phosphorus coupling constants, |J(SnP)| and |J(PbP)|, differ significantly depending upon the hybridization of the phosphorus atom. For Sn(BDI)(P{SiMe(3)}(2)), |J(SnP)| is the largest reported in the literature, surpassing values attributed to compounds with tin-phosphorus multiple-bonds. Low temperature NMR studies of Pb(BDI)(P{SiMe(3)}(2)) show two species with vastly different |J(PbP)| values, interpreted as belonging to the endo and exo conformations, with sp(2)- and sp(3)-hybridized phosphorus, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.