Abstract

Let G be a (p,q) graph and A be a group. We denote the order of an element $a in A $ by $o(a).$ Let $ f:V(G)rightarrow A$ be a function. For each edge $uv$ assign the label 1 if $(o(f(u)),o(f(v)))=1 $or $0$ otherwise. $f$ is called a group A Cordial labeling if $|v_f(a)-v_f(b)| leq 1$ and $|e_f(0)- e_f(1)|leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled with an element $x$ and number of edges labelled with $n (n=0,1).$ A graph which admits a group A Cordial labeling is called a group A Cordial graph. In this paper we define group ${1 ,-1 ,i ,-i}$ Cordial graphs and characterize the graphs $C_n + K_m (2 leq m leq 5)$ that are group ${1 ,-1 ,i ,-i}$ Cordial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.