Abstract

Fluvial erosion on early Mars was dominated by valley networks created through a combination of groundwater processes and surface runoff. A reduced greenhouse effect due to CO2 loss, together with a declining geothermal heat flux, promoted the growth of a cryosphere and a Hesperian hydrologic regime dominated by outflow channel formation. We test the hypothesis that the transition from valley network to outflow channel formation was preceded by a more subtle evolution characterized by a weakening of surface runoff, leaving groundwater processes as the dominant, final source of valley network erosion. Our hypothesis, supported by a terrestrial analog in the Atacama desert of Chile, is related to the groundwater sapping reactivation hypothesis for densely dissecting highland valley networks on Mars suggested by Baker and Partridge in 1986 and focuses on the age analysis of large, sparsely dissecting valley networks such as Nanedi Valles, Nirgal Vallis, valleys in fretted terrain, and tributaries of outflow channels and Valles Marineris chasmata. We find that these features are consistently late Noachian to Hesperian in age, younger than Noachian densely dissecting dendritic valley networks in the southern highlands. In the Tharsis region the observation of dense and sparse valley network morphologies on Hesperian terrain suggests that while surface runoff gave way to groundwater processes consistent with our hypothesis, the transition may have occurred later than elsewhere on the planet. The volcanic nature of Tharsis suggests that geothermal heat and volatile production led to episodically higher volumes of surface runoff in this region during the Hesperian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.