Abstract

Many arid basins in western North America are likely to experience future changes in precipitation timing and amount. Where shallow water tables occur, plant acquisition of groundwater and soil water may be influenced by growing season precipitation. We conducted a rainfall manipulation experiment to investigate responses of four common native plant species to ambient, increased, and decreased summer monsoon rainfall. We measured plant xylem pressure potentials (Ψ) and stable oxygen isotope signatures (δ18O) to assess effects of altered precipitation on plant water relations and water acquisition patterns. Reduced rainfall decreased Ψ more in the grasses Sporobolus airoides and Distichlis spicata than the more deeply rooted shrubs Sarcobatus vermiculatus and Ericameria nauseosa. E. nauseosa had little response to natural or experimental differences in available soil water. Plant xylem water δ18O indicated that S. airoides and D. spicata are almost entirely dependent on rain-recharged soil water, while E. nauseosa is almost entirely groundwater-dependent. Sarcobatus vermiculatus used groundwater during dry periods, but utilized precipitation from soil layers after large rainfall events. Persistent changes in precipitation patterns could cause shifts in plant community composition that may alter basin-scale groundwater consumption by native plants, affecting water availability for human and ecosystem uses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.