Abstract
Sustainable water resources management in arid and semi-arid areas needs robust models, which allow accurate and reliable predictive modeling. This issue has motivated the researchers to develop hybrid models that offer solutions on modelling problems and accurate predictions of groundwater potential zonation. For this purpose, this research aims to investigate the capability and robustness of a novel hybrid model, namely the logistic model tree (LMT) and compares it with state-of-the-art models such as the support vector machine and C4.5 models that locate potential zones for groundwater springs. A spring location dataset consisting of 359 springs was provided by field surveys and national reports and from which three different sample data sets (S1–S3) were randomly prepared (70% for training and 30% for validation). Additionally, 16 spring-related factors were analyzed using regression logistic analysis to find which factors play a significant role in spring occurrence. Twelve significant geo-environmental and morphometric factors were identified and applied in all models. The accuracy of models was evaluated by three different threshold-dependent and –Independent methods including efficiency (E), true skill statistic (TSS), and area under the receiver operating characteristics curve (AUC-ROC) methods. Results showed that the LMT model had the highest accuracy performance for all three validation datasets (Emean = 0.860, TSSmean = 0.718, AUC-ROCmean = 0.904); although a slight sensitivity to change in input data was sometimes observed for this model. Furthermore, the findings showed that relative slope position (RSP) was the most important factor followed by distance from faults and lithology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.