Abstract

Complex hydrogeological conditions in China’s coal mines have contributed to frequent mine water disasters. A simple and effective method to determine water inflow sources and paths is therefore essential. The Longmen Mine, located in Henan Province, in central China was used as a case study. A Piper diagram and cluster analysis were used to screen the characteristic values of 18 water samples from potential aquifers. A comprehensive fuzzy evaluation of the groundwater ions was carried out to determine the main source of the total mine inflow. Then, based on conservation of ionic masses, a matrix function was established to calculate the groundwater recharge composition. Finally, using measured water inflows for the Cambrian limestone aquifer, the calculated and observed results were compared. The results showed that the Carboniferous Taiyuan Formation limestone aquifer (the L7 limestone aquifer) accounts for 60.8% of the total mine inflow, while the Cambrian limestone and roof sandstone aquifers account for 34.8 and 4.4% of the inflow, respectively. The normal mine inflow totals about 19,200 m3/day, of which 6,840 m3/day is from the Cambrian limestone aquifer. This agrees well with the calculated value of 6,720 m3/day. Thus, the method is feasible and reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call