Abstract

Elevated salinity in groundwater (over 250 mg/l chloride) in a fractured chalk aquifer in the municipality of Greve, Denmark, has been attributed to seawater intrusion from the Baltic Sea, resulting in the closure of a number of wells nearest to the coastline. However, a recent study in eastern Denmark shows that the salinity could also be from ancient connate pore waters. Historical chemistry data from bulk-water samples collected from wells have been used to determine the source. The sample data were studied with respect to their historical changes and temporal trends in chloride, carbonate, sulfate, sodium, potassium, magnesium, and calcium. Wells in the southern third of the municipality are relatively low in sodium and carbonate and high in chloride and calcium/magnesium, indicating waters undergoing saline intrusion. Wells in the northern two-thirds of the municipality are high in carbonate and sodium, but low in chloride and calcium/magnesium, indicating a freshening of the aquifer. This is confirmed by the temporal trends in chloride, where chloride levels in the northern wells remain constant, whereas in the south, chloride increases as abstraction continues. Therefore close monitoring for seawater intrusion should be conducted in the southern third of the municipality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call