Abstract
BackgroundThe purpose of this work was to demonstrate an approach to groundwater remedial design that is automated, cost-effective, and broadly applicable to contaminated aquifers in different geologic settings. The approach integrates modeling and optimization for use as a decision support framework for the optimal design of groundwater remediation systems employing pump and treat and re-injection technologies. The technology resulting from the implementation of the methodology, which we call Physics-Based Management Optimization (PBMO), integrates physics-based groundwater flow and transport models, management science, and nonlinear optimization tools to provide stakeholders with practical, optimized well placement locations and flow rates for remediating contaminated groundwater at complex sites.ResultsThe algorithm implementation, verification, and effectiveness testing was conducted using groundwater conditions at the Umatilla Chemical Depot in Umatilla, Oregon, as a case study. This site was the subject of a government-sponsored remedial optimization study. Our methodology identified the optimal solution 40 times faster than other methods, did not fail to perform when the physics-based models failed to converge, and did not require human intervention during the solution search, in contrast to the other methods. The integration of the PBMO and Lipschitz Global Optimization (LGO) methods with standalone physically based models provides an approach that is applicable to a wide range of hydrogeological flow and transport settings.ConclusionsThe global optimization based solutions obtained from this study were similar to those found by others, providing method verification. Automation of the optimal search strategy combined with the reliability to overcome inherent difficulties of non-convergence when using physics models in optimization promotes its usefulness. The application of our methodology to the Umatilla case study site represents a rigorous testing of our optimization methodology for handling groundwater remediation problems.
Highlights
The purpose of this work was to demonstrate an approach to groundwater remedial design that is automated, cost-effective, and broadly applicable to contaminated aquifers in different geologic settings
This paper presents the development, scope and application of the simulation-optimization approach for remediating contaminated groundwater including reliability and efficiency verification to find globally optimized solutions to groundwater remediation problems
The total net present value cost from Physics-Based Management Optimization (PBMO) ($1,664,085) significantly improved upon the costs committed for remediation at the site by implementing the RIP ($3,836,285) and the design achievable via Subject Matter Expertise (SME) ($2,230,905)
Summary
The purpose of this work was to demonstrate an approach to groundwater remedial design that is automated, cost-effective, and broadly applicable to contaminated aquifers in different geologic settings. The costs of addressing water quality issues on a global scale are substantial. Regulatory agencies such as the U.S Environmental Protection Agency (EPA). The objective of this research is to develop and demonstrate an automated, cost-effective, and broadly applicable approach to groundwater remedial design applicable to contaminated aquifers in different geologic settings. This paper presents the development, scope and application of the simulation-optimization approach for remediating contaminated groundwater including reliability and efficiency verification to find globally optimized solutions to groundwater remediation problems. The approach is demonstrated using a well-studied, publically documented site example that was the subject of a government-sponsored remedial optimization study
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.