Abstract

The current study employs geochemical and isotopic tools to understand hydrochemical and recharge processes characterizing ophiolite aquifer in North Oman in conjunction with the Hajar Super Group (HSG) aquifer. A total of 57 samples were analyzed for major ions and stable isotopes 2H and 18O. The geochemical composition of groundwater indicates that water–rock interaction and mixing are the main processes controlling groundwater chemistry. Groundwater in the HSG is characterized by carbonate minerals dissolution contrary to the groundwater in the ophiolites where silicates dissolution dominates. This results in differences in the groundwater chemical composition in the two systems. Isotopic characteristics of precipitation collected during the study period indicate two main moisture sources from the Indian Ocean and the Mediterranean Sea. Groundwater δ2H and δ18O values suggest two recharge sources to the ophiolite aquifer: lateral flow from the HSG and direct infiltration. Recharge from direct infiltration in the highlands, which is depleted in δ2H and δ18O, retains the same isotopic signature of precipitation, whereas that in the low land substantially reflects an evaporation effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.