Abstract

Groundwater recharge is estimated using an improved daily soil moisture balance based on a single soil water store for a climate classified as tropical with distinct dry seasons; an upland area in northwest Sri Lanka is used as an example. When the water availability is limited and the soil is under stress, the actual evapotranspiration is less than the potential value; the stress factor is estimated in terms of the readily and total available water, soil properties and effective root depth. Runoff is estimated using coefficients which depend on rainfall intensity and soil moisture deficits. A new component, near surface storage, is used to represent continuing evapotranspiration on days following heavy rainfall even though the soil moisture deficit is high. Recharge is estimated for permanent grass and a commonly cultivated vegetable crop. The plausibility of the model outputs is examined using independent information and data, including well water level fluctuations. Uncertainties and variations in parameter values are explored using sensitivity analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.