Abstract

It is of significance to elucidate the groundwater quality and hydrogeochemical processes for sustainable utilization of groundwater resources in water shortage regions. A total of 256 groundwater samples were collected in typical watersheds in Zhangjiakou, northern China. The hydrochemical parameters, conventional ions, and trace elements were measured, and δD and δ18O data were collected to delineate the groundwater quality and hydrogeochemical processes. The results showed that 32.91% of the groundwater could be directly used for drinking water sources in the Bashang Plateau, north of the study area. The F- and NO3--N were the main parameters above the standard threshold for drinking water. In contrast, the groundwater quality in the Baxia River Basins, south of the study area, was of a better scenario. Nonetheless, high concentrations of F-, total hardness, and SO42- were still observed. Most samples in the Bashang Plateau had relatively higher salinity than the Baxia River Basins. Both surface water and groundwater in the study area originated from local meteoric water with considerable hydraulic connections. The high-fluoride groundwater was primarily formed by dissolution of fluoride-rich minerals under conditions of high pH and Na+, low Ca2+, and rich in HCO3-. The dissolution of carbonate and silicate minerals accompanied by strong cation exchange and weak evaporation was the dominant water-rock interaction affecting the hydrochemical composition of groundwater, and anthropogenic NO3- input had an extra influence on hydrochemical process. This study provides a scientific guideline for the protection and allocation of local groundwater resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.