Abstract

In the future, groundwater will be the major source of water for agriculture, drinking and food production as a result of global climate change. With increasing population growth, demand for groundwater has increased. Therefore, sustainable groundwater storage management has become a major challenge. This study introduces a new ensemble data mining approach with bivariate statistical models, using FR (frequency ratio), CF (certainty factor), EBF (evidential belief function), RF (random forest) and LMT (logistic model tree) to prepare a groundwater potential map (GPM) for the Booshehr plain. In the first step, 339 wells were chosen and randomly split into two groups with groundwater yields above 11 m3/h. A total of 238 wells (70%) were used for model training, and 101 wells (30%) were used for model validation. Then, 15 effective factors, including topographic and hydrologic factors, were selected for the modeling. The accuracy of the groundwater potential maps was determined using the ROC (receiver operating characteristic) curve and the AUC (area under the curve). The results show that the AUC obtained using the CF-RF, EBF-RF, FR-RF, CF-LMT, EBF-LMT and FR-LMT methods were 0.927, 0.924, 0.917, 0.906, 0.885 and 0.83, respectively. Therefore, it can be inferred that the ensemble of bivariate statistic and data mining models can improve the effectiveness of the methods in developing a groundwater potential map.

Highlights

  • In recent decades, in many countries, including Iran, due to population growth and industrialization, groundwater has been identified as one of the greatest natural resources [1,2]

  • The results show that the highest accuracy is related to the certainty factor (CF)-random forest (RF) model (0.927), evidential belief function (EBF)-RF (0.924), frequency ratio (FR)-RF (0.917), CF-logistic model tree (LMT) (0.906), EBF-LMT

  • CF and EBF are more accurate than FR by including uncertainty in their results

Read more

Summary

Introduction

In many countries, including Iran, due to population growth and industrialization, groundwater has been identified as one of the greatest natural resources [1,2]. It provides about 50% of the water needed for drinking, 40% of the water needed for industry and 20% of the water for agriculture [3,4]. Groundwater storage potential here relates to the maximum amount of permanent storage in aquifers [7] This information can play a major role in decision making in the regions. Considering the fact that developing countries, such as Iran, face a lot of restrictions in access to hydrological information, it is essential to identify the current status of the groundwater system [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.