Abstract

The disruption of lithologies by cross-cutting faults and the variability in volcanic structures make the hydrogeology of the rifted volcanic terrain in Ethiopia very complex. Along two transects, selected due to their hydrogeologic characteristics, groundwater flow, depth of circulation and geochemical evolution have been conceptualized. The groundwater flow continuity between the high rainfall plateau bounding the rift and the rift valley aquifers depends principally on the nature of the bounding faults. Up to 50% of recharge to the rift aquifers comes from the plateau as groundwater inflow where the rift is cross cut by transverse fault zones. Recharge from the mountains is found to be insignificant where the rift is bounded by marginal grabens; channel loss and local precipitation are the principal sources of recharge to the rift aquifers in such cases. At a regional scale, there is a clear zonation in the geochemical compositions of groundwaters, the result of aquifer matrix composition differences. The environmental isotope results show that the majority of the aquifers contain modern groundwaters. In a few localities, particularly in thermal groundwaters representing deeper circulation, palaeo-groundwaters have been identified. Deeper groundwaters in the rift floor have a uniform 14C age ranging between 2,300 and 3,000 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call