Abstract

Reliable and precise forecasts of future groundwater level fluctuations are crucial constituents of sustainable management of scarce water resources and design of remediation plans. Groundwater simulations and predictions are often performed by employing physically based models, which are not applicable in a majority of water scarce areas around the globe, particularly in the developing countries like Bangladesh due to data limitations. On the other hand, data-driven statistical forecast models have demonstrated their suitability to model nonlinear and complex hydrogeological processes to forecast short- and long-term groundwater level fluctuations. The purpose of this effort is to propose a non-physical based approach by utilizing a discrete Space-State model as a prediction tool to forecast future scenarios of groundwater level fluctuations. The present study utilizes the prediction focused approach of the system identification process in which the overall objective is to develop a pragmatic dynamic system model. The performance of the proposed approach is evaluated for groundwater level data at three observation wells of Tanore upazilla in Rajshahi district, Bangladesh. Historical weekly time series data of groundwater level fluctuations from the three observation wells for 39 (1980–2018) years is used to develop the time series model, which is used for future groundwater level predictions for a period of next 22 years (up to 2040). The findings demonstrate the conceivable applicability of the proposed discrete Space-State modelling approach in forecasting future scenarios of groundwater level fluctuations in the selected observation wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call