Abstract

The chemical composition of water sampled in a 700 m deep underground barite-fluorite mine in the crystalline basement of the Black Forest area (SW Germany) varies systematically with depth and the length of flow paths trough, the fracture porosity of the gneiss matrix. Calcium and sulfate increase as a result of a combined sulfide oxidation and plagioclase alteration reaction. The gneiss contains andesine–plagioclase (An20–An40) and is rich in primary sulfide. As an effect of Ca and SO4 release by the prime water–rock reaction, dissolved oxygen decreases and the waters become more reduced. The waters have Cl/Br mass ratios of about 50, which is very close to that of experimentally leached gneiss powders indicating that the rock matrix is the source of the halogens. The waters are undersaturated with respect to calcite in the upper parts of the mine. With increasing reaction progress, calcite saturation is reached and carbonate forms as a reaction product of the prime reaction that also controls the partial pressure of CO2 to progressively lower values. The chemical evolution of groundwater in fractured basement of the Clara mine suggests that the partial pressure of CO2 is an internally buffered parameter rather than a controlling external variable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.