Abstract

AbstractThe Chihuahua City region, located in the semiarid‐arid northern highlands of Mexico, has experienced intensive groundwater abstraction during the last 40 years to meet water demands in the region. A geochemical survey was carried out to investigate the evolution from baseline to modern conditions of a 130‐km flow path including the El Sauz–Chihuahua–Aldama–San Diego de Alcalá regions. The research approach included the use of major chemical elements, chlorofluorocarbons and environmental isotope (18O, 2H, 13C and 14C) tracers. Stable isotopes indicate that groundwater evolves from the evaporation of local rainfall and surface water. Groundwater located at the lower end of the flow section is up to 6000 years old and older groundwater in the order of 9000 years BP was found in a deep well located in the upper part of the flow system, implying contribution from a neighbour basin. The background groundwater chemistry upstream of Chihuahua City results from feldspar weathering. Beyond Chihuahua City the chemical conditions are strongly modified owing to disposal of sewage from public and industrial water supplies into the Rio Chuviscar, subsequent allocation of this water to agricultural irrigation areas and direct infiltration under the river bed. As a consequence, anions like chloride and sulphate are mainly related to surface sources. Nitrate is controlled in part by sewage from public supply and industry and in part by agricultural practices. Arsenic and fluoride are related to weathering of rock formations of local mineralized ranges and subsequent enrichment of the basin‐fill by magmatic processes. The results of this study have implications for groundwater management in an arid region that depends entirely on groundwater for domestic, industrial and agricultural water consumption. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call