Abstract

Nutrients are vital for plant subsistence and growth in nutrient-poor and arid ecosystems. The deep roots of phreatophytic plants are necessary to access groundwater, which is the major source of nutrients for phreatophytes in an arid desert ecosystem. However, the mechanisms through which changes in groundwater depth affect nutrient cycles of phreatophytic plants are still poorly understood. This study was performed to reveal the adaptive strategies involving the nutrient use efficiency (NUE) and nutrient resorption efficiency (NRE) of desert phreatophytes as affected by different groundwater depths. This work investigated the nitrogen (N), phosphorus (P), and potassium (K) concentrations in leaf, stem, and assimilating branch, as well as the NUE and NRE of the phreatophytic Alhagi sparsifolia. The plant was grown at groundwater depths of 2.5, 4.5, and 11.0 m during 2015 and 2016 in a desert-oasis transition ecotone at the southern rim of the Taklimakan Desert in northwestern China. Results show that the leaf, stem, and assimilating branch P concentrations of A. sparsifolia at 4.5 m groundwater depth were significantly lower than those at 2.5 and 11.0 m groundwater depths. The K concentrations in different tissues of A. sparsifolia at 4.5 m groundwater depth were significantly higher than those at 2.5 and 11.0 m groundwater depths. Conversely, the NRE of P in A. sparsifolia was the highest among the three groundwater depths, while that of K in A. sparsifolia was the lowest among the three groundwater depths in 2015 and 2016. The N concentration and NUE of N, P, and K in A. sparsifolia, however, were not influenced by groundwater depth. Further analyses using structural equation models showed that groundwater depth had significant effects on the P and K resorption of A. sparsifolia by changing soil P and senescent leaf K concentrations. Overall, our results suggest groundwater depths affect P and K concentrations and resorption but not their utilization in a desert phreatophyte in its hyper-arid environment. This study provides a new insight into the phreatophytic plant nutrient cycle strategy under a changing external environment in a hyper-arid ecosystem.

Highlights

  • Nutrient utilization and resorption are vital for plant growth and ecosystem processes in various ecosystems (Aubrey et al, 2012; Zhao et al, 2017; Wang et al, 2020)

  • nutrient use efficiency (NUE) is defined as the product of the mean residence time (MRT) of nutrients in plants and nutrient productivity (NP), which is the rate of biomass increase per unit nutrient in plants (Berendse and Aerts, 1987); a functional interpretation of NUE is considered in accordance with different nutrient use strategies: high NP is strongly associated with low MRT and NP is not related to MRT (Eckstein and Karlsson, 2001; Yuan et al, 2008)

  • The P and K concentrations in the leaf, stem, and assimilating branch of A. sparsifolia were significantly affected by groundwater depth (Figures 1, 2)

Read more

Summary

Introduction

Nutrient utilization and resorption are vital for plant growth and ecosystem processes in various ecosystems (Aubrey et al, 2012; Zhao et al, 2017; Wang et al, 2020). NUE is defined as the product of the mean residence time (MRT) of nutrients in plants and nutrient productivity (NP), which is the rate of biomass increase per unit nutrient in plants (Berendse and Aerts, 1987); a functional interpretation of NUE is considered in accordance with different nutrient use strategies: high NP is strongly associated with low MRT and NP is not related to MRT (Eckstein and Karlsson, 2001; Yuan et al, 2008). Other suggested that the NUE of woody shrubs and perennial herbs are similar among species and different habitats (high and low water supply) in a typical agropastoral ecotone in the central part of Inner Mongolia Autonomous Region, China (Yuan et al, 2007). Knowledge gap on the roles of species type and nutrient availability in affecting NUE still exists in various ecosystems

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call