Abstract

Degradation of freshwater ecosystems has engendered legislative mandates for the protection and management of surface waters while groundwater-dependent ecosystems (GDEs) have received much less attention. This is so despite biodiversity and functioning of GDEs are currently threatened by several anthropogenic stressors, particularly intensified land use and groundwater contamination. We assessed the impacts of land drainage (increased input of dissolved organic carbon, DOC, from peatland drainage) and impaired groundwater chemical quality (NO3−-N enrichment from agricultural or urban land use) on biodiversity and ecosystem functioning in 20 southern Finnish cold-water springs using several taxonomic and functional measures. Groundwater contamination decreased macroinvertebrate and bacterial diversity and altered their community composition. Changes in macroinvertebrate and bacterial communities along the gradient of water-quality impairment were caused by the replacement of native with new taxa rather than by mere disappearance of some of the original taxa. Also species richness of habitat specialist (but not headwater generalist) bryophytes decreased due to impaired groundwater quality. Periphyton accrual rate showed a subsidy-stress response to elevated nitrate concentrations, with peak values at around 2500 μg L−1, while drainage-induced spring water brownification (increased DOC) reduced both periphyton accrual and leaf decomposition rates already at very low concentrations. Our results highlight the underutilized potential of ecosystem-level functional measures in GDE bioassessment as they seem to respond to the first signs of spring ecosystem impairment, at least for the anthropogenic stressors studied by us.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.