Abstract

In this study, a heuristic search strategy based on stochastic-simulation statistic (S–S) approach was developed for groundwater contaminant source characterization (GCSC) with simulation model parameter estimation. First, single kernel extreme learning machine (KELM) was built as surrogate system of the numerical simulation model to reduce huge computational load while evaluating the likelihood. However, compared with single KELM, multi-kernel extreme learning machine (MK-ELM) is more flexible for large amounts of data. To improve the approximation accuracy of the surrogate system to numerical simulation model, the MK-ELM surrogate system was first developed. Then, a heuristic search iterative process was first designed for GCSC with simulation model parameter estimation. The self-adaptive sampling method was proved to be more efficient than one-time sampling. Based on this idea, a self-adaptive feedback correction step was inserted into the heuristic search iterative process to ameliorate the training samples of the surrogate system in the posterior region, which further improved accuracy of simultaneous identification results. Finally, the identification results were obtained when the iteration terminated. The proposed approaches were tested in a hypothetical case study. It was shown that the heuristic search strategy can be used to assist in groundwater contaminant source characterization with simulation model parameter estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call