Abstract

In sub-Saharan Africa (SSA), diverse fungi belonging to Aspergillus section Flavi frequently contaminate staple crops with aflatoxins. Aflatoxins negatively impact health, income, trade, food security, and development sectors. Aspergillus flavus is the most common causal agent of contamination. However, certain A. flavus genotypes do not produce aflatoxins (i.e., are atoxigenic). An aflatoxin biocontrol technology employing atoxigenic genotypes to limit crop contamination was developed in the United States. The technology was adapted and improved for use in maize and groundnut in SSA under the trademark Aflasafe. Nigeria was the first African nation for which an aflatoxin biocontrol product was developed. The current study includes tests to assess biocontrol performance across Nigeria over the past decade. The presented data on efficacy spans years in which a relatively small number of maize and groundnut fields (8–51 per year) were treated through use on circa 36,000 ha in commercially-produced maize in 2018. During the testing phase (2009–2012), fields treated during one year were not treated in the other years while during commercial usage (2013–2019), many fields were treated in multiple years. This is the first report of a large-scale, long-term efficacy study of any biocontrol product developed to date for a field crop. Most (>95%) of 213,406 tons of maize grains harvested from treated fields contained <20 ppb total aflatoxins, and a significant proportion (>90%) contained <4 ppb total aflatoxins. Grains from treated plots had preponderantly >80% less aflatoxin content than untreated crops. The frequency of the biocontrol active ingredient atoxigenic genotypes in grains from treated fields was significantly higher than in grains from control fields. A higher proportion of grains from treated fields met various aflatoxin standards compared to grains from untreated fields. Results indicate that efficacy of the biocontrol product in limiting aflatoxin contamination is stable regardless of environment and cropping system. In summary, the biocontrol technology allows farmers across Nigeria to produce safer crops for consumption and increases potential for access to premium markets that require aflatoxin-compliant crops.

Highlights

  • Throughout sub-Saharan Africa (SSA), certain Aspergillus species frequently contaminate with aflatoxins several staple crops, including maize and groundnut (Shephard, 2008; Udomkun et al, 2017)

  • The current study provides a decade-long summary of efficacy of the aflatoxin biocontrol product Aflasafe R in maize and groundnut cropped in Nigeria

  • Our results demonstrate that an aflatoxin biocontrol product registered for use in maize and groundnut in Nigeria, is a practical, cost-effective, and environmentally safe aflatoxin mitigation tool that enables farmers in Nigeria to produce both crops with little to no aflatoxin content

Read more

Summary

Introduction

Throughout sub-Saharan Africa (SSA), certain Aspergillus species frequently contaminate with aflatoxins several staple crops, including maize and groundnut (Shephard, 2008; Udomkun et al, 2017). In SSA, human and animal aflatoxin exposure is high (JECFA, 2018; Sirma et al, 2018; Blankson et al, 2019). High aflatoxin content restricts farmers’ access to local and international premium markets. This results in reduced income for farmers and aggregators, processors, and exporters (Williams, 2008; Wu, 2015). Because of the challenges posed by aflatoxins, substantial efforts have been made to both understand the contamination process and design management programs to reduce food safety risks (James et al, 2007; Hell et al, 2008; Bandyopadhyay et al, 2016; Seetha et al, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call