Abstract

The ground-state properties of the nucleus 100Sn have been studied by the non-relativistic mean-field approach with Skyrme interactions, the relativistic mean-field approach with the Hartree approximation and the density-dependent relativistic mean-field approach. We compare and discuss the numerical results of average binding energies, and matter root-mean-square radii of proton and neutron distributions. It is shown that the non-relativistic, relativistic and density-dependent relativistic mean-field theories can be successfully applied to the nucleus near the proton drip line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.