Abstract

We study ground-state properties of interacting two-component boson gases in a one-dimensional harmonic trap by using the exact numerical diagonalization method. Based on numerical solutions of many-body Hamiltonians, we calculate the ground-state density distributions in the whole interaction regime for different atomic number ratio, intra- and inter-atomic interactions. For the case with equal intra- and inter-atomic interactions, our results clearly display the evolution of density distributions from a Bose condensate distribution to a Fermi-like distribution with the increase of the repulsive interaction. Particularly, we compare our result in the strong interaction regime to the exact result in the infinitely repulsive limit which can be obtained by a generalized Bose-Fermi mapping. We also discuss the general case with different intra- and inter-atomic interactions and show the rich configurations of the density profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call