Abstract

With objective to determine ground state magnetic structure of multiferroic hexagonal YMnO3 we performed systematic non-collinear spin density-functional-theory (DFT) study of six possible magnetic configurations of Mn ions, treating exchange and correlation effects by standard local-spin-density approximation (LSDA), by LSDA including Hubbard correction (LSDA+U), and taking into account the spin-orbit interaction. We found that P63 and P6´3 configurations are the most stable ones, with very small energy difference between them. This result substantiates conclusions of latest neutron-diffraction studies. Both configurations are characterized by canting of Mn spins that produces weak ferro- (P63) or anti-ferromagnetism (P6′3) along the hexagonal c-axis. The calculated Mn magnetic moments are found to be in good agreement with experiment, and electronic structure generally agrees with previous non-collinear spin DFT studies that used different basis sets and exchange and correlation functionals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call