Abstract
Ground roll is a persistent problem in land seismic data. This type of coherent noise often contaminates seismic signals and severely reduces the signal-to-noise ratio of seismic data. A variety of methods for addressing ground-roll attenuation have been developed. However, existing methods are limited, especially when using real land seismic data. For example, when ground roll and reflections overlap in the time or frequency domains, traditional methods cannot completely separate them and they often distort the signals during the suppression process. We have developed a generative adversarial network (GAN) to attenuate ground roll in seismic data. Unlike traditional methods for ground-roll attenuation dependent on various filters, the GAN method is based on a large training data set that includes pairs of data with and without ground roll. After training the neural network with the training data, the network can identify and filter out any noise in the data. To fulfill this purpose, the proposed method uses a generator and a discriminator. Through network training, the generator learns to create the data that can fool the discriminator, and the discriminator can then distinguish between the data produced by the generator and the training data. As a result of the competition between generators and discriminators, generators produce better images whereas discriminators accurately recognize targets. Tests on synthetic and real land seismic data show that the proposed method effectively reveals reflections masked by the ground roll and obtains better results in the attenuation of ground roll and in the preservation of signals compared to the three other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.