Abstract

Next generation performance-based earthquake engineering involves the use of a probability framework, which incorporates the inherent uncertainty and variability in seismic hazard, structural and non-structural responses, damage states and economic and casualty losses. One key issue in seismic performance assessment is the scaling of ground motions for nonlinear response-history analysis. In this paper, the impact of ground-motion scaling procedures, including 1) geometric-mean scaling of pairs of ground motions, 2) spectrum-matching of ground-motions, 3) first-mode-based scaling to a target spectral acceleration and 4) maximum-minimum orientation scaling, on the distributions of floor acceleration, story drift and floor spectral acceleration of a sample high-rise building is investigated using a series of nonlinear response-history analyses of a 34-story moment-resisting frame building. The advantages and disadvantages of each ground-motion scaling method are discussed for seismic performance assessment of a 34-story building.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.