Abstract
From an early stage in their development, human infants show a profound drive to explore the objects around them. Research in psychology has shown that this exploration is fundamental for learning the names of objects and object categories. To address this problem in robotics, this paper presents a behavior-grounded approach that enables a robot to recognize the semantic labels of objects using its own behavioral interaction with them. To test this method, our robot interacted with 100 different objects grouped according to 20 different object categories. The robot performed 10 different behaviors on them, while using three sensory modalities (vision, proprioception and audio) to detect any perceptual changes. The results show that the robot was able to use multiple sensorimotor contexts in order to recognize a large number of object categories. Furthermore, the category recognition model presented in this paper was able to identify sensorimotor contexts that can be used to detect specific categories. Most importantly, the robot’s model was able to reduce exploration time by half by dynamically selecting which exploratory behavior should be applied next when classifying a novel object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.