Abstract

In predictions of railway-induced vibrations, a distinction is generally made between the quasi-static and dynamic excitation. The quasi-static excitation is related to the static component of the axle loads. The dynamic excitation is due to dynamic train–track interaction, which is generated by a large number of excitation mechanisms, such as the spatial variation of the support stiffness and the wheel and track unevenness. In the present paper, the quasi-static excitation and the dynamic excitation due to random track unevenness are evaluated by means of numerical predictions. A solution strategy is presented that allows for the evaluation of the second-order statistics of the response due to dynamic excitation based on the power spectral density function of the track unevenness. Due to the motion of the train, the second-order statistics of the response at a fixed point in the free field are non-stationary and an appropriate solution procedure is required. The quasi-static and dynamic contribution to the track and free-field response are analysed for the case of InterCity and high-speed trains running at a subcritical train speed. It is shown how the train speed affects the quasi-static and dynamic contribution. Finally, results of numerical predictions for different train speeds are compared with field measurements that have been performed at a site along the high-speed line L2 Brussels–Köln within the frame of homologation tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call