Abstract

Local climate change and water shortage led it essential to assess the amounts and locations of groundwater recharge. To keep the Iraqi Western Desert's groundwater system sustainable. A model was developed to estimate soil moisture using artificial neural networks (ANN), geographic information systems (GIS), and remote sensing (RS). The soil needed approximately 26.54% of the total amount of rainfall to saturate voids before groundwater was recharged during the study years. The amount of recharge of groundwater was estimated depending on the water balancing method. The results showed that approximately 455,306,884 m3 of rainwater during the study years was infiltrated for groundwater recharge, nearly half of the total amount of rainfall. Sandy loam soils were most leached to recharge groundwater, while loam soils were of medium rates for groundwater recharge, and silty loam soils were the lowest rates in groundwater recharge rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call