Abstract

Boreal peatlands are considered sinks for atmospheric mercury (Hg) and are important sources of methylmercury (MeHg) to downstream ecosystems. Climate change-driven increases in average annual temperature in coming decades will be amplified at higher latitudes and will modify many biogeochemical processes in high boreal and subarctic peatlands that are important landscape features in these regions. Changes in water quality are an important issue for Northern ecosystems and fish consumers, and the directionality of changes in mercury levels due to climate warming presents considerable uncertainty. Peatlands are key landscape hotspots for MeHg production, however, the impact of climate warming on Hg cycling in boreal peatlands is not well studied. We use a multi-year field-based warming experiment (2 years passive, 1 year active ground warming) across two boreal peatland types (moss and sedge dominated) to explore the effects of ground warming on inorganic Hg (IHg) release, net MeHg production, and biogeochemical controls on both of these processes including the availability of sulfate (SO42−) and dissolved organic matter (DOM) quality and concentration. There were higher porewater IHg and MeHg concentrations under active ground warming conditions in both peatlands, likely related to both increased microbial metabolism, and changes in biogeochemical conditions that favor Hg methylation. Both SO42− (electron acceptor) and bioaccessible DOM (electron donor) are nutrients for sulfate-reducing bacteria which are dominant Hg methylators in freshwater environments, and increases in SO42− and/or bioaccessible DOM concentrations under warming played an important role in the observed changes in net MeHg production. Warming increased SO42− concentrations in the sedge-dominated but not in the moss-dominated fen likely because of a larger pool of groundwater derived SO42− in the sedge-dominated site. Warming increased DOM concentration in both peatland sites through enhanced decomposition of peat and increased release of root exudates from vascular plants, and the balance of these processes varied by peatland type and degree of warming. Experimentally increased ground temperatures increased microbial metabolism, organic matter turnover, and the availability of IHg all of which resulted in increases in porewater MeHg, indicating that climate-driven ground warming will increase MeHg production in northern peatlands in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.