Abstract

Transient emission spectroscopy has been used to probe the rate of photoinduced electron transfer between metal centres within a novel trimeric complex [[Os(bpy)2(bpe)2][Os(bpy)2Cl]2]4+, where bpy is 2,2'-bipyridyl and bpe is trans-1,2-bis-(4-pyridyl)ethylene. Transient emission experiments on the trimer, and on [Os(bpy)2 (bpe)2]2+ in which the [Os(bpy)2 Cl]+ quenching moieties are absent, reveal that the rate of photoinduced electron transfer (PET) across the bpe bridge is 1.3 +/- 0.1 x 10(8) s(-1). Investigations into the driving forces for oxidation and reduction of the electronically excited state within the trimer indicate that quenching of the [Os(bpy)2 (bpe)2]2+ centre within the trimer involves electron transfer from the [bpe Os(bpy)2 Cl]+ centres to the electronically excited state with a driving force of -0.3 eV. Monolayers of the complex, [Os(bpy)2 bpe pyridine]2+, have been formed by spontaneous adsorption onto platinum microelectrodes and used to probe the dynamics of electron transfer across the trans-1,2-bis-(4-pyridyl)ethylene bridge in the ground state. These monolayers are stable and exhibit well defined voltammetric responses for the Os2+/3+ redox reaction. Cyclic voltammograms recorded at high scan rates can be accurately modelled according to a non-adiabatic electron transfer model based on the Marcus theory using a standard heterogeneous electron transfer rate constant, k(o), of 3.1 +/- 0.2 x 10(4) s(-1) and a reorganization energy of 0.4 +/- 0.1 eV. This rate constant is a factor of approximately two orders of magnitude smaller than that found for photoinduced electron transfer across the same bpe bridge for identical driving forces. This significant difference is interpreted in terms of both the nature of the orbitals involved in electrochemically and optically driven electron transfer, as well as the strength of electronic coupling between two molecular components as opposed to a molecular component and a metal electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call