Abstract

To quantitatively validate diffusion-weighted MRI (DW-MRI) applications, a hardware phantom containing crossing fibers at a sub-voxel level is presented. It is suitable for validation of a large spectrum of DW-MRI applications from acquisition to fiber tracking, which is an important recurrent issue in the field. Phantom properties were optimized to resemble properties of human white matter in terms of anisotropy, fractional anisotropy, and T(2). Sub-voxel crossings were constructed at angles of 30, 50, and 65 degrees, by wrapping polyester fibers, with a diameter close to axon diameter, into heat shrink tubes. We show our phantoms are suitable for the acquisition of DW-MRI data using a clinical protocol. The phantoms can be used to successfully estimate both the diffusion tensor and non-Gaussian diffusion models, and perform streamline fiber tracking. DOT (Diffusion Orientation Transform) and q-ball reconstruction of the diffusion profiles acquired at b = 3000 s/mm(2) and 132 diffusion directions reveal multimodal diffusion profiles in voxels containing crossing yarn strands. The highly purpose adaptable phantoms provide a DW-MRI validation platform: applications include optimisation of acquisition schemes, validation of non-Gaussian diffusion models, comparison and validation of fiber tracking algorithms, and quality control in multi-center DWI studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call