Abstract

This paper is devoted to the existence of ground state sign-changing solutions for a class of Kirchhoff-type problems(Section.Display) where is a bounded domain with a smooth boundary , , and satisfies asymptotically linear growth that is very different from super-3-linear growth in previous literatures. Without assuming the standard Variant Nehari-type condition related to (0.1), we prove that (0.1) possesses one ground state sign-changing solution , and show that its energy is strictly larger than twice that of the ground-state solutions of Nehari-type. Furthermore, we establish the convergence property of as the parameter .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.