Abstract

An extensive computational study is presented with the quest to investigate the nature of the ground-state geometry of the Si(0 0 1) surface, a subject of recent experimental controversy. We analyze for the first time in detail the possible sources of errors which would arise in any correlated calculation for a system size of interest here. For this purpose, we present a detailed analysis of the cluster model of the surface at the DFT and MCSCF level of theory. Estimates of errors arising from the use of pseudopotential, finite cluster size, and biased (method dependent) choice of ground-state geometry are given. The resulting error is estimated to be comparable to the energy scale of interest. On the other hand, the energy variation due to negative thermal expansion at low temperature is found to be qualitatively consistent with dimer symmetrization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.