Abstract

We study the glassy super-rough phase of a class of solid-on-solid models with a disordered substrate in the limit of vanishing temperature by means of exact ground states, which we determine with a newly developed minimum cost flow algorithm. Results for the height-height correlation function are compared with analytical and numerical predictions. The domain wall energy of a boundary induced step grows logarithmically with system size, indicating the marginal stability of the ground state, and the fractal dimension of the step is estimated. The sensibility of the ground state with respect to infinitesimal variations of the quenched disorder is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.