Abstract
Recent experiments have revealed the formation of stable droplets in dipolar Bose-Einstein condensates. This surprising result has been explained by the stabilization given by quantum fluctuations. We study in detail the properties of a BEC in the presence of quantum stabilization. The ground-state phase diagram presents three main regimes: mean-field regime, in which the quantum correction is perturbative, droplet regime, in which quantum stabilization is crucial, and a multi-stable regime. In the absence of a multi-stable region, the condensate undergoes a crossover from the mean-field to the droplet solution marked by a characteristic growth of the peak density that may be employed to clearly distinguish quantum stabilization from other stabilization mechanisms. Interestingly quantum stabilization allows for three-dimensionally self-bound condensates. We characterized these self-bound solutions, and discuss their realization in experiments. We conclude with a discussion of the lowest-lying excitations both for trapped condensates, and for self-bound solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.