Abstract

We study the ground-state phases of two-dimensional spin–orbit coupled spin-1 Bose–Einstein condensate loaded in a plane quadrupole field. In the absence of rotation, for the fixed spin-orbit coupling strength, the ordinary stripe phase is found when the strength of the magnetic field gradient is small. As the strength of magnetic field gradient enhances, the system realizes the phases with three layer vortices along the radial direction. The number of vortices in the second layer is successively increased and the vortices in the outermost layer disappear when the strength of magnetic field gradient surpass the critical value. For the large strength of magnetic field gradient, the system only has the inner layer vortices. The magnetic field inhibits the region of vortices. For the fixed magnetic field gradient strength, the vortices of the system elongate along the radial direction and form a series of vortex lines, the number of the vortex line increases as the strength of spin-orbit coupling enhances. By adding the rotation, for the fixed strengths of spin-orbit coupling and magnetic field gradient, the number of second layer vortices also successively increases as the rotational frequency increases. The number of vortices in the certain layer of the ground-state density can be regularly changed under the effects of the magnetic field and spin–orbit coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.