Abstract

Organic materials with room-temperature phosphorescence (RTP) are in high demand for optoelectronics and bioelectronics. Developing RTP materials highly relies on expert experience and costly excited-state calculations. It is a challenge to find a tool for effectively screening RTP materials. Herein we first establish ground-state orbital descriptors (πFMOs ) derived from the π-electron component of the frontier molecular orbitals to characterize the RTP lifetime (τp ), achieving a balance in screening efficiency and accuracy. Using the πFMOs , a data-driven machine learning model gains a high accuracy in classifying long τp , filtering out 836 candidates with long-lived RTP from a virtual library of 19,295 molecules. With the aid of the excited-state calculations, 287 compounds are predicted with high RTP efficiency. Impressively, experiments further confirm the reliability of this workflow, opening a novel avenue for designing high-performance RTP materials for potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call