Abstract

The intermolecular charge-transfer complex (CTC) between the conjugated polymer MEH-PPV and the low-molecular organic acceptor trinitrofluorenone (TNF) has been studied by Raman and optical absorption spectroscopy. On mixing MEH-PPV with TNF, an absorption band due to the CTC appeared in the optical gap of the polymer, whereas, in the Raman spectra, characteristic bands of the polymer are shifted and their widths and intensities change. The low-frequency shift of the strongest band at 1580 cm−1 in the Raman spectrum of the polymer, assigned to the symmetric stretching vibration of the phenyl group, is shown to be due to electron density transfer from the π-conjugated system of the polymer to the acceptor and is as large as 5 cm−1, which corresponds to a charge transfer on the order of 0.1e−1. Even at a low acceptor concentration (one TNF molecule per 10 monomer units of the polymer), most Raman-active conjugated chains are involved in the CTC. It is suggested that conjugated segments of the polymer can form a CTC of variable composition MEH-PPV: TNF = 1: X, where 0.1 ≤ X ≤ 0.5 (for each monomer unit of the polymer), and one TNF molecule can thereby interact with two conjugated segments of MEH-PPV. The conjugated polymer chains involved in the CTC can become more planar, and their interaction with the local environment can noticeably change; however, their conjugation length, most likely, remains unaltered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.