Abstract

The isotropic scattering phase shift is calculated for non-relativistic bosons interacting at low energies via an arbitrary finite-range potential in d spacetime dimensions. Scattering on a (d-1)-dimensional torus is then considered, and the eigenvalue equation relating the energy levels on the torus to the scattering phase shift is derived. With this technology in hand, and focusing on the case of two spatial dimensions, a perturbative expansion is developed for the ground-state energy of N identical bosons which interact via an arbitrary finite-range potential in a finite area. The leading non-universal effects due to range corrections and three-body forces are included. It is then shown that the thermodynamic limit of the ground-state energy in a finite area can be taken in closed form to obtain the energy-per-particle in the low-density expansion, by explicitly summing the parts of the finite-area energy that diverge with powers of N. The leading and subleading finite-size corrections to the thermodynamic limit equation-of-state are also computed. Closed-form results --some well-known, others perhaps not-- for two-dimensional lattice sums are included in an appendix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.