Abstract

We investigate the possibility of enhancement of cooling a trapped ion by combining the electromagnetically induced transparency (EIT) effect with the standing-wave coupling. Our study shows that the quantum destructive interference which is caused by the EIT effect and the standing-wave coupling can cancel all the dominant heating effects if appropriate parameters are chosen. The analytical predictions and numerical simulations show that the final temperature can be much lower than the recoil energy. In addition, this fast-cooling scheme is robust against fluctuations of the strength of the laser beams, which makes it more feasible for experimental realization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call