Abstract
We propose a mechanism of ground-state blockade between two $N$-type Rydberg atoms in virtue of Rydberg-antiblockade effect and Raman transition. Inspired by the quantum Zeno effect, the strong Rydberg antiblockade interaction plays a role in frequently measuring one ground state of two, leading to a blockade effect for double occupation of the corresponding quantum state. By encoding the logic qubits into the ground states, we efficiently avoid the spontaneous emission of the excited Rydberg state, and maintain the nonlinear Rydberg-Rydberg interaction at the same time. As applications, we discuss in detail the feasibility of preparing two-atom and three-atom entanglement with ground-state blockade in closed system and open system, respectively, which shows that a high fidelity of entangled state can be obtained with current experimental parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.