Abstract

We study the phase diagrams and thermodynamic properties of a system of coexisting wide-band current carriers (c-particles) and narrow-band electrons (d-electrons) which can form local pairs. There are two distinct mechanisms of superconductivity in the model considered: (i) the intersubsystem charge exchange, which leads to the superconducting state involving both types of electrons and (ii) the pair hopping interaction of d-electrons, leading to the superconducting state of d-particles only. In contrast to previous works on the subject, we assume an arbitrary value of on-site density interaction of d-electrons U, which allows us to study the effects of reduced d-pair binding energy. Within the approach in which the U term is exactly treated we determine the evolution of superconducting properties as a function of interactions and relative position of the bands. In a definite range of parameters the system shows features which are intermediate between those of a local pair superconductor and those of a classical BCS model. The increasing on-site Coulomb repulsion U competing with the intersubsystem charge exchange and the pair hopping interaction reduces the superconducting critical temperature. Moreover, it can induce a change of the superconducting transition into the first order one. Above a critical value of U, dependent on concentration of electrons and other interactions, the superconducting state cannot be stable at any temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.