Abstract

Within local-spin density-functional theory, we study the ground state and infrared response of two-dimensional, triple concentric quantum ring nanostructures. Changes in their physical properties are presented as a function of the number of electrons or the intensity of a perpendicularly applied magnetic field. We discuss the addition spectrum of few-electron triple quantum rings at zero magnetic field, as well as the physical appearance of the ground state and dipole response of selected systems containing up to 50 electrons. We also investigate the ground state, persistent currents, and charge- and spin-density responses of a system made of 30 electrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call