Abstract

We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant α. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an L 1 function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to α by the formula αphys ≃ α(1 + 2α/(3π) log Λ)−1, where Λ is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge Z. In the nonrelativistic limit, we obtain that this number is ≤ 2Z, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Séré and Solovej on the mean-field approximation of no-photon QED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.