Abstract

In this paper, a methodology to assess ground risk with multi-uncertainties is introduced, which is associated with a major unmanned aerial vehicle (UAV) in-flight incident. In the assessment model, random factors are taken into account including uncertainty in the drag force, uncertainty in the UAV velocity, and the random effects of local wind. The probability distribution of impact positions is first estimated by using a second-order drag model with probabilistic assumptions regarding the least well-known parameters. Then, an approach for modeling and estimating the ground risks is presented, in which the ground casualties are set as the safety index. In the multifactor risk estimation model, ground casualty areas covered by the UAVs’ debris are determined. Correspondingly, the probability of fatal injuries to people is derived by addressing the protection effects, impact energy, and energy threshold a person can sustain. Further, four kinds of sheltering effects are defined. Finally, the affected area on the ground is partitioned into six zones, taking into consideration the density and distribution of the local population. Case studies are conducted for fixed-wing and rotary-wing UAVs. Risk levels on the ground are obtained and compared with the widely accepted target safety level of manned aircrafts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call