Abstract
In the research devoted to ballet, ground reaction force (GRF) and shoe condition have been identified as possible risk factors for injury. Shoe conditions vary immensely between dancers and could indeed have significant impact on biomechanics and injury rates. Therefore, the objectives of this study were: 1. to investigate the maximal ground reaction force (GRFmax) when ballet dancers land from two jump conditions in pointe shoes, in flat technique shoes, and barefoot; and 2. to explore the effects that specific pointe shoe characteristics (shoe age, shank style) have on GRFmax. Twenty-one healthy female ballet majors in an elite college program volunteered for the study. All participants had similar years of classical ballet training (12.85 ± 2.37). For the study, they performed two ballet jumps, assemblé and grand jeté. Each jump was performed in the three shoe conditions mentioned previously. A total of 18 trials per subject were completed, with the order of jump type and shoe condition randomized. Each jump was landed on a force plate, and maximal GRFs were recorded. A repeated measures analysis of variance was calculated with two within subject factors, shoe type at three levels and jump type at two levels. Tukey's post hoc test was applied to significant findings. Alpha level was set a priori at p = 0.05. Results demonstrated no significant differences in GRFmax between the three shoe conditions; however, significant differences in GRFmax between the jump types were identified. Post-hoc testing revealed that when dancers performed the grand jeté jump, higher GRFmax was obtained compared to the assemblé jump. In conclusion, results of this study indicate that GRFmax varies between ballet jumps; however, it does not appear that shoe condition significantly affects GRFmax.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.