Abstract

Ground Penetrating Radar (GPR) surveys were conducted on Mesoproterozoic eolian, fluvial, deltaic, estuarine, and shallow marine successions in the Chapada Diamantina Basin. The subsurface continuation of facies and facies architecture exposed on road cuts was imaged using the GPR signal of a 400-MHz antenna penetrating 8 m in depth, even with mudstone intervals. Reflection patterns in the GPR profiles that were compared with photo mosaics of outcrops and supporting data from vertical sections and gamma ray logs, reveal sedimentary, stratigraphic, and structural features, such as sedimentary structures, the external geometry of architectural elements, stratigraphic surfaces, folds and tension gashes. The patterns most likely reflect the response from low-weathered, non-porous muscovite-illite-rich mudstone and quartzarenite sandstone in which authigenic and detrital illite and sericite are prevalent clay minerals.Measured vertical sections and radar stratigraphy indicate high-frequency cyclic successions of estuarine and shoreface intervals are present at the base of the Tombador Formation. The shoreface intervals are composed of heterolithic strata and offshore tidal bars deposits. The heterolithic shoreface strata exhibit tabular geometry that can be easily identified throughout the outcrop and in the subsurface. Such intervals represent the end of high-frequency transgressive cycles, and hence they are potential candidates for including the maximum flooding surfaces and for defining genetic sequences. Therefore, GPR proved to be an independent method for studying facies architecture and the establishment of a high-resolution stratigraphic framework even in the Precambrian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call