Abstract

The assessment and control of ground movements during the installation of large diameter deeply-buried (LDDB) caissons are critically important to maintain the stability of surrounding infrastructures. However, for twin LDDB caissons which have been installed worldwide, no well-documented guidelines for assessing the induced ground movements are available due to the complexities of caisson–soil interaction. To this end, considering the mechanical boundaries of caissons and mechanized installation process, this paper presents a simple kinematic mechanical model balancing both computational cost and accuracy, which can be easily incorporated in commercial finite-element (FE) programs. Based on a project of twin LDDB caissons alternately installed employing a newly developed installation technology in wet ground with stiff clays in Zhenjiang, China, a three-dimensional (3D) numerical model is developed to capture the ground movements in terms of surface settlements and radial displacements induced by the installation of twin LDDB caissons. Moreover, hardening soil model with small-strain stiffness (HSSmall model) conceptually capable of capturing the nonlinear soil stiffness from very small to large strain levels is used to simulate undrained ground. The validations against field observations, empirical predictions and centrifuge test data are carried out to demonstrate the accuracy and validity of the developed FE model. Subsequently, the comparisons of ground movements numerically obtained in three frequently used installation schemes (i.e., synchronous, asynchronous and alternating installation) are conducted for installation sequence optimization of twin caissons. It is found that synchronous installation is the optimal scheme for limiting ground movements. Parametric studies considering the effects of horizontal spacing between twin caissons, staged penetration depth, inner diameter, controllable soil-plugging height, frictional coefficient between caisson–soil interface, as well as cutting edge gradient are thus performed in synchronous installation scheme. Based on an artificial data set generated through FE calculation, the multivariate adaptive regression splines (MARS) model capable of accurately capturing the nonlinear relationships between a set of input variables and output variables in multi-dimensions is used to analyze the sensitivity of caisson design parameters. Finally, the MARS mathematical equations for predicting the maximum surface settlement and radial displacement used in preliminary caisson design are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.